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Expressions are derived for the apparent refractometric fractions of components in solutions of strong electrolytes, as 
determined from moving boundary experiments; the derivations are based on Dole's moving boundary theory and they 
apply to electrophoresis experiments similar to those used for analyzing protein mixtures in buffer solutions. I t is shown 
that the apparent fraction for a "protein" component does not in general approach the true refractometric fraction as the 
ratio of total "protein" concentration to "buffer" concentration approaches zero though in favorable cases the difference be
tween the two values may be very small. Graphical comparisons of the apparent and actual fractions are presented for 
two representative systems containing four ionic species, and the rapidity with which the series solutions converge to the exact 
Dole theory is illustrated. Comparisons between predicted and observed apparent refractometric fractions are included for 
the two systems. The effects of the ionic mobilities and refractive increments on the difference between the actual and 
apparent fractions are discussed. 

The moving boundary method as developed by 
Tiselius1 and others has been used widely in the 
analysis of solutions of proteins and of other ionized 
macromolecules. A refractometric analysis is com
monly involved, the quantities measured (such 
as Rayleigh fringe displacements or areas of 
schlieren patterns) being proportional to the 
differences in refractive index across the moving 
boundaries. In the analysis of a mixture of N pro
teins each protein i disappears in one of the bound
aries, across which the refractive index difference is 
An,-. The apparent refractometric fraction of 

N 

component i is therefore equal to An,/Y^1 Are/. 
; = i 

However, the true analysis in terms of weight 
fractions will differ from the apparent refracto
metric analysis because (1) the specific refractive in
dex increments are not in general the same for dif
ferent components and (2) across every moving 
boundary there exist small concentration differ
ences of the components which do not disappear, 
in addition to the concentration change of the 
component which does disappear. As a result of 
these superimposed concentration differences the 
refractometric analyses obtained from the ascend
ing and descending patterns are different and fur
thermore the analyses will vary with the ratio of 

(1) A. Tiselius, Trans. Faraday Soc, 33, 524 (1937). 

the total protein concentration to the buffer con
centration.2-4 

In order to make quantitative corrections for the 
superimposed concentration differences occurring 
in the electrophoretic analysis of proteins and other 
weak electrolytes, a general theory is required cor
responding to the theories of Dole5 and Svensson6 

for strong electrolytes. Because of the complexity 
of weak electrolyte systems, no such general theory 
is at present available, although computations 
have been made for a few simple cases using mov
ing boundary equations developed for univalent 
electrolytes.7 However, calculations made on the 
assumption that the Dole theory can be applied 
approximately to protein systems support experi
mental observations that the predominant errors 
caused by the superimposed concentration differ
ences tend to decrease as the ratio of total protein 
to buffer salt concentration decreases.4'8~10 At-

(2) H. Svensson, Arkiv Kemi, Mineral. Geol., 17A, No. 14 (1943). 
(3) G. E. Perlmann and D. Kaufman, T H I S JOURNAL, 67, 638 

(1945). 
(4) S. H. Armstrong, Jr., M. J. E. Budka and K. C. Morrison, ibid., 

69, 416 (1947). 
(5) V. P. Dole, ibid., 67, 1119 (1945). 
(6) H. Svensson, Arkiv Kemi, Mineral. Geol., 22A, No. 10 (1946). 
(7) J. C. Nichol, E. B. Dismukes and R. A. Alberty, T H I S JOURNAL, 

80, 2610 (1958). 
(8) L. G. Longsworth, / . Phys. and Colloid Chem., 61, 171 (1947). 
(9) R. A. Alberty, J. Chem. Educ, 25, 619 (1948). 
(10) J. R. Cann, T H I S JOURNAL, 71, 907 (1949). 
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tempts have been made to eliminate these errors 
entirely by a linear extrapolation of the apparent 
composition to a value of zero for the ratio of the 
total protein concentration to buffer concentra
tion3'4 (appropriate corrections being made for any 
differences in specific refractive increments of the 
protein components). Sometimes this extrapola
tion has been performed using constant concen
tration either of the buffer10 or of the total protein.2 

Cann10 has cautioned that the extrapolated com
position has not been shown to be the correct value. 
It will in fact be shown below that such extrapo
lation procedures do not in general lead to cor
rect analyses of mixtures of strong electrolytes. 
The magnitude of the residual error depends on the 
nature of the system being studied. Available 
experimental evidence indicates that this error 
may be small for protein systems; however, since 
it was found to be large for experiments with 
chlorate and iodate as "protein" ions in a potassium 
chloride "buffer," data for that system are re
ported in the experimental part of this paper to 
illustrate the series expansions which are derived 
from the Dole theory. It is hoped that these series 
expansions will contribute to the general under
standing of moving boundary electrophoresis 
which is needed to utilize fully the inherent pre
cision of this analytical method. 

In the following paper7 it will be shown that 
corresponding errors also exist for the case of weak 
electrolytes. 

Equations for Descending Boundaries 
Specification of the System and Definition of 

Terms.—Suppose that in a vertical tube, Fig. Ia, a 

l,m 

1,2,3,4,...,m 

l,m 

, m - l , m 

m 
///////////A 

m-

m-2 

l ,4, . . . ,m 

1,3,4,...,m 

1,2,3,4,. . . ,m 

a b 
Fig. 1.—The descending limb of a moving boundary 

experiment with strong electrolytes: a, before current is 
passed; b, after current is passed. This experiment is 
analogous to the electrophoresis of a protein solution. 

boundary is formed between solution m containing 
ionic species 1 and m and solution 1 containing ionic 
species 1, 2, 3, 4, . . . , m. The charges on all the 
species except m have the same sign. For the fol

lowing derivations to be applicable it is not neces
sary that the concentrations of the two initial solu
tions satisfy the Donnan equilibrium, even though 
this equilibrium frequently exists between the two 
solutions used for protein electrophoresis experi
ments. On application of an electrical potential 
of appropriate sign the descending moving bound
ary system shown in Fig. Ib will develop provided 
there is no convection. It is assumed that ionic 
species 2, . . . , m — 1 all have different mobilities 
with the mobility decreasing as the number desig
nating the ion increases. Ions 1 and m are consid
ered to be present in relatively large amounts 
compared to the other ions so that they correspond 
to the two "buffer" ions while ions 2, . . . , m — 1 
correspond to the "protein" ions. All the elec
trolytes are assumed to be completely ionized, but 
the ionization of the solvent is considered to be 
negligible. The numbers beside the channels indi
cate the ions present in the different phases, 
whereas the phases themselves are identified by th* 
numbers within the channel. 

Our procedure may be described as follows: 
Given the equivalent concentration, C,-, and the 
relative mobility,5 r,-, of each ionic species i, to
gether with the refractive increments per equiv
alent, kS', of each neutral salt consisting of ions i 
and m, we will derive an expression for the ap
parent refractometric fraction, Fj, of each "pro
tein" salt containing ionic species j and m. This 
apparent fraction, Fj, is the value obtained from 
the usual refractometric measurements of the de
scending boundary system. The expression for 
Fj will be derived as a power series in ratios of the 
"protein" ion concentrations to the "buffer" ion 
concentrations; the limiting value of each Fj is 
then obtained by simply letting these ratios ap
proach zero. Of importance to experimentalists is 
the inverse problem of determining the actual 
refractometric fractions of the "proteins" from 
measured values of their apparent refractometric 
fractions; the formulation of a practical procedure 
for performing such an inversion of these equations 
requires further study and will not be considered 
here. 

To define Fj precisely, we first define the equiv
alent refraction of an electrically neutral salt by 

k,-(an/a I G D ^ fcl) (D 

where n is the refractive index of the solution. 
Here d, the concentration of ionic species i, is 
given the same algebraic sign as that of the corre
sponding ion and is expressed as equivalents per 
unit volume of solution; \d\ denotes the absolute 
value of Ci. The subscript k 9^ i indicates that 
all ionic concentrations except C1- and Cm are held 
constant; it should be understood that the concen
tration of ionic species m is varied along with C, 
during the differentiation indicated in equation 1 
in such a way as to maintain electroneutrality. 
Although the equivalent refractions, k,-, will be 
used throughout this article, it may be helpful to 
note that they are simply related to the specific re
fractions, k/ , per gram of component i by 

ki = k / (Mi + .!/„) (2) 
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Here M, and Mn are the weights per equivalent of 
ions i and m, respectively. Assuming that each 
k; (or k / ) is independent of the concentration of 
every component over the concentration range en
countered, we may now define Fj in terms of the 
refractive indices of phases l,j— l,j and m — 1 as 

m - l 

Y k i (G . , - i - Ct.i) 
TIj-I — flj J = I 

Fi -
Ml — K m - I 

(3) 

YJ ^ ( C , - - Ci,„-l) 

The double subscript on the concentrations de
notes first, the ionic species and second, the phase 
considered; when no second subscript is used the 
concentration is that in the starting solution, phase 
1. Thus Qj denotes the concentration of ionic 
species i in phase j while Q denotes the concentra
tion of ionic species i in phase 1. This notation 
will be used henceforth throughout this paper, ex
cept that for ascending boundaries Q will denote 
the concentration of ionic species i in phase m. 

Apparent Refractometric Fractions as Functions 
of Concentration Ratios in the Various Phases.— 
The actual refractometric fraction of each "pro
tein" component j in the starting solution, phase 
1 of Fig. 1, is denoted by 

_kjCj_ 
m — 1 

Y ̂ c1 

is = (4) 

Also, terms in equation 3 such as Qj, Q,m-\> etc., 
which are zero for the system shown in Fig. Ib, 
are dropped. It is then possible to convert equa
tion 3 to the form 

F<-Q 

Here 

k i ( C i , ) - i — Cl.,-) . Cj,j-i . 

KjC/ Lj 

Q = I + 

= 1 

m — 1 

E 
i-j + l 

It1(Ci - C1., 

m — 1 

k,-(G.,--i - Cj.j) 
kjCj 

Im-I 

(5) 

» = 2 

k.nSj , 

k(r<8i, ft (6) 

in which the symbol 5 denotes differences in relative 
mobilities 

Si1 = U - Tj (7) 

All relative mobilities are assumed to be constant 
over the concentration range considered.5 To de
rive the second expression for Q in equation 6, it is 
convenient to utilize the Kohlrausch regulating 
function,5'11 which for any phase / is defined by 

S Ci,; 

,• = 1 r< 
(8) 

Because this function has the same value across 
each moving boundary, it has the same value for 
phases 1 and m—1, i.e., o>x = wm- \. From this 
fact and from the electroneutrality relation between 
the equivalent concentrations in any phase I 

CIl) F. Kohlrausch, 4»» . Physik, 62, 209 (1S97). 

Y Ci.i = o 
» = i 

it may be shown that 

Ci,„ C1 1 + 
7W rj&±n /CAl 
A2

 riSi" V 6 / J 

(9) 

(10) 

Substitution of this expression and equation 4 into 
the first definition of Q in equation 6 gives the de
sired second definition in terms of the actual re
fractometric fractions, /,-, in phase 1. It is to be 
noted that Q is independent of the ratio of total 
"protein" concentration to "buffer" concentration. 

For subsequent use equation 5 is written in terms 
of concentration ratios 

kiCt 
kjCj 

+ -br + (Cuj-\\(, _ Ci,,- \ 

V Ci A C11,-J 

i = j ' + i * i w V Ci / \ C i , , _ i / 

This expression is seen to involve no series approxi
mations. In order to replace all concentrations in 
the intermediate phases 2, . . . , m — 1 by the con
centrations in phase 1, however, it is convenient to 
use series expansions. We will choose to express 
Fj as a series in 

y = 

Y *<a 
i=_2 

k iC , 
(12) 

which is the ratio of total "protein" concentration 
to "buffer" concentration on the basis of refractive 
index. 

Evaluation of Concentration Ratios in Equation 
11 using Dole's Equation.—The concentration 
ratios in equation 11 are given by Dole's equation 
316 in the form 

S±i_ x's>< Z13-, 
C',,-1 r ,-(*,' — n) 

where the quantities Xj needed for this relation are 
the roots of Dole's equation 33, i.e., of 

m — l „ 

Ci = 0 (14) 
£1 ('< -

These roots will be obtained as series expansions 
which converge rapidly provided the absolute con
centrations of the "buffer" ions, j&| and \Cm\, 
are considerably larger than those of the "protein" 
ions. To solve for a particular root, Xj, equation 
14 is first written in the form 

Q 1 - Xj) "yy Skm 

" * = 2 ( '» 

~ (r, - *,) VcJ (15) 

where the notation on the summation sign means 
that k is given all values from 2 to m — 1 inclusive 
except the value j (which may have any value from 
2 to m — 1 inclusive). Rearrangement of equation 
15 yields the expression in closed form 

( n - Xj) 
1 + • 

5lm 

St11 (CH\ 

- Xj) Kc1) 

Xj = Tj + 
&>m(ri — Xj) 

Sim 

(r, - Xj) y 

1 + 

» Skm 

2 (>"* - * ; ) '(S) (16) 
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W h e n C1/C1 « 1 a n d Ck/G < < 1, t h e first a p - a n d 
p r o x i m a t e so lu t i on is seen t o b e 3 _ i 

X1 = n + ... (17) D" = E 
_ , , . . . s=2 
T h e second a p p r o x i m a t i o n is 

Xj = rt + -
0 

riSuSu(.d.m)' / C A 2 

r.(5i„)2(88;)2 V C j + 

1; Sjm / C A 

Sim V C l / + (18) 
^x(SIs)2SiSm Y ^ Skm CkC, 

*-> x,.. r.i r,(slmyssi k Sks C i 2 

c,c, 
f^3 fd2 nnis^ys.iSti C1

2 (2ib) 

S u b s t i t u t i o n of t h e s econd a p p r o x i m a t i o n , e q u a t i o n 
18, for Xj i n t o t h e r i g h t s ide of e q u a t i o n 16, a n d ex
p a n s i o n in t h e n u m e r a t o r of t h e t e r m in b r a c k e t s , 
p r o v i d e s t h e t h i r d a p p r o x i m a t i o n for Xj; s u b - F i n a l S e r i e g E x p a n s i o n s f o r t h e Apparent R e 
s t i t u t i o n of t h i s t h i r d a p p r o x i m a t i o n i n t o t h e r i g h t f r a c t o m e t r i c F r a c t i o n s . - S u b s t i t u t i o n of e q u a t i o n s 
s ide of e q u a t i o n 16 y ie lds t h e f o u r t h a p p r o x i - 2Q a n d 2 1 i n t Q tion n i d d s t h e d e s ] r e d e x . 
m a t i o n 

Xj = n + A' - A" + A"' + 

w h e r e 

A" = 

a n d 

A' = 

(slm)2 

" 1 ; Ojm L-J 

Sim Ci 

m — 1 

ft = 2 "*>' 

(19) 

(19a) 

(19b) 

m — 1 A'" = t& (a-)2 (S)3 + 3 ^ - 5 Skm Cj2Ck 

(«1. 
ft = 2 l<"-': C,3 

ft?y 

ft = 2 Sk> C' 

kytj 

• ^ Okm ^k 

k=2 ih' Cl 

ft?y (19c) 

I t will b e n o t e d t h a t t h e p r i m e s in e q u a t i o n 19 a n d 
in s u c c e e d i n g e q u a t i o n s c o r r e s p o n d t o t h e p o w e r s t o 
w h i c h t h e c o n c e n t r a t i o n r a t i o s a r e r a i s e d ; conse 
q u e n t l y A' is of o r d e r y ( e q u a t i o n 12), A" is of or
d e r y2, e t c . O n s u b s t i t u t i n g e q u a t i o n 19 i n t o e q u a 
t i o n 13 w e h a v e 

P. j 
Ci. J - , 

= 1 

w h e r e 

B' = 

' + B" - E 

fjSljSjm Cj 

fjSlmSji Cl 

B" = 

a n d 

r»aijQj« 

rj(SlmySji 

SiiSjm / C j V I * y ^m Cji 

Sa V Ci / " ,tr1, Stj Ci k=2 
ft*? 

(20) 

(20a) 

(20b) 

nSuSjm / 8 i i 8 j m y / C j \ 8 

j(«im)««ji <v 8jj A c J + 

~ ~ 5>'< ft = 2 S"' C ' 3 

ft?y 

. V~> SltSkm Cj2Ck . 
SljSjm 2-1 77—^ -7TY- + ^ 2 (Ski)

2 C i 3 

k*3 

(S1J)2 

'nt-1 . r ~ 
y Okm Cfe 

^ 2 S~ki C1 

k¥-i 

(20c) 

T h e r e m a i n i n g r a t i o s r e q u i r e d a r e f o u n d b y t a k i n g 
p r o d u c t s of t h e a b o v e r a t i o s , y i e l d i n g 

= 1 - D' + D" + ... 

w h e r e 
j - i 

D' -T, 
TiSlsSBm Cs 

rs5lmSsi G 

( 2 1 ) 

( 2 1 a ) 

press ion 

/ j ^jtdeso = -~ (1 - E0 + Eiy + E,y2 

where 

E0 = 
K1T1Sjn 

^jTjS1n 

j — 1 m~\ 

B i - E ^ - + E Vi-
s = 2 .s=; + ! 

.) (22) 

(22a) 

(22b) 

a n d 

£ 2 = 

H e r e 

j — 1 m — 1 j — \ s — \ 

E W1.. + E xi„ + E E ^1.,, + 
j — 1 w — 1 

E E ^...< (22c) 
5 = 2 < = J + 1 

= ^ 4 = f ̂ = _ ^) /. (22b-l) 
k s S 8 j S i „ V k j r , S l m r./J' K ' 

KjSsjSim \ k s r j 5 i „ TjJ 

Vr1S1J[Sin)
2S11Ssn K1

2TjSijSlt(S.m)2
 f , , 

" k j 2 k s r j ( 5 l m ) ' ( S j « ) 2 J l h ^ 2' "•- W x - ^ 1 ' 

m — 1 

E 
P 9^3 

/ T 2 k s k , r , ( 8 i m ) 2 8 , 

k s V , ( 5 l m ) 2 ( 5 j s ) 2 j 

k i 3 r i S i j 8 j m 5 u S s m 5 j , m 

L / k i ^ _ ^ , N / 
s \ K j r j 0 i m ^1Oj8 / 

C-D 

X j . , = 
kia8i,-(8?-TO)zgi, 

k j ^ S l m W . 

" ^ 1 K1
2JS1J)2S !mS. 

t^2Kjkp(Slm)2S 

2 S i 1 / k i r i 8 , m _ ^ \ . , _ 

1S)
2 \k,rjSlm Tj) } i h 

.Spr^ / k i r i S , m _ rj\ . . 

ipSj, V k , r j 5 i „ Tj) Jr-s (22c-2) 

ksk,(Si„,)2 Vrsr,5j,8j( Tg.jrjr,rtSlmJ 

7 _ K1
2Tt2S1JSJmSnSsTa , . (22c-4) 

k j k s r Jr 8(Si 1 n) 2SJiS 1 8
 J 

A s u m in e q u a t i o n 22b or 22c is zero if t h e u p p e r 
l imi t is less t h a n t h e lower l i m i t : e.g., Uj = 2 t h e n 

E 0. 

E q u a t i o n 22 s h o w s t h a t a p l o t of t h e a p p a r e n t 
r e f r a c t o m e t r i c f rac t ion , Fj, versus y e x t r a p o l a t e s 
to fj (1 — E0)/Q a s y ->- 0 r a t h e r t h a n t o t h e a c t u a l 
r e f r a c t o m e t r i c f rac t ion , /_,-, in t h e s t a r t i n g so lu t i on . 
C l e a r l y t h e v a r i o u s s u p e r i m p o s e d c o n c e n t r a t i o n 
differences ac ro s s a b o u n d a r y a r e not effects of 
h i g h e r o r d e r w h i c h v a n i s h m o r e r a p i d l y t h a n t h e 
c o n c e n t r a t i o n c h a n g e of t h e m a i n " p r o t e i n " c o m -

file:///Kjrj0im
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ponent across that boundary as y —»• 0. Conse
quently fj is not in general obtained when F7- is ex
trapolated to a value of zero for the ratio, y, of 
total "protein" concentration to "buffer" concen
tration. For sufficiently small values of y the de
pendence of Fj on y is given accurately by the terms 
in equation 22. 

Equations for Ascending Boundaries 
Figure 2 summarizes the notation used for an 

ascending boundary system corresponding to the 
descending boundary system considered above. 
Each apparent refractometric fraction, Fj, for 
these ascending boundaries is defined by the same 
expression, equation 3, which was used for the de
scending boundary system. To conserve space we 
will not present steps in the derivation but will 
give only the final result. This derivation is an
alogous to that given above; the only additional in
formation needed is supplied by the relation6 

Ci^n_ = _^_ ( 2 3 ) 

ti.m-l Wm_i 

which gives the concentration ratio of each ionic 
species across the stationary boundary in terms of 
the values of the regulating function on the two 
sides of this boundary. After expressing Fj in 
terms of concentration ratios in the several phases 
and replacing these ratios by the concentration 
ratios in phase m by utilizing series expansions for 
the roots of Dole's equation 33, one arrives finally 
at the desired result 

where 

= •^(1 - G0 + Giy + Gsy* + . 

kiriSim 

KjT ,'dim 

m—1 ,7 — 1 

Gi = E Utl. + E Vi-
S=j+1 5 = 2 

• • ) ( 2 4 ) 

(24a) 

(24b) 

and 
JM-I j - \ 

G2 = E Wt.. + E Xi.. + 
S-)+ 1 5 = 2 

m — l 5 — 1 m — 1 j — 1 

E E Yi-> + E E z>-> (24c) 
s=j+2t-j+l s=j+lt=2 

Expressions for Uj,s, etc., are given above, equa
tions 22. I t will be observed that Gi and G2 are 
obtained by simple alterations of the limits on the 
sums in the equations for Ei and Ez, respectively. 

The actual refractometric fractions, /_,-, are again 
defined by equation 4, and the ratios, y, of total 
"protein" concentration to "buffer" concentration 
are defined by equation 12; it is to be understood 
that the concentrations considered are those in the 
original solution, phase m (Fig. 2). Hence Q 
(equation 6) and each fj has the same numerical 
value for the ascending as for the descending bound
ary systems of the usual electrophoresis experi
ment and an important point emerges: because 
G0 (equation 24a) is equal to E0 (equation 22a) the 
value of each Fj at y = 0 is the same for the ascending 
and the descending boundary systems. As pointed 
out following equation 22, Fj is in general different 
from/,- at j> = 0. 

I,m 

l,2,...,m-2,m-l,m 

l,m 

l,2,m 

1,2,3, m 

/ U A 1 

l,2,...,m-2,m 

l,2,...,m-2,m-l,m 

1,2 m-2,m-l,m 

m-2 

m- l 

//////////// 
m 

Fig . 2 . — T h e a scend ing l imb of a m o v i n g b o u n d a r y ex

p e r i m e n t w i t h s t r o n g e lec t ro ly tes , ana logous t o t h e e lec t ro

phores i s of a p ro t e in so lu t ion : a, before c u r r e n t is p a s s e d ; b , 

af ter c u r r e n t is passed . 

Systems Containing Four Ionic Species 
This is the simplest type of system involving the 

determination of an apparent refractometric frac
tion; the original solution contains two kinds of 
"protein" ions, 2 and 3, in a "buffer" consisting of 
ionic species 1 and 4. For this class of systems 
equations 22 and 24 simplify greatly, and compari
sons of theoretical predictions with experimental 
results can be made readily. Further, certain im
plications of the theory become evident. 

For systems of four ionic species, equation 22 for 
descending boundaries reduces to 

i*2(deao) = I=) (1 K0 + Kiy + K2y
2 + ...) (25) 

where 

K0 
kiri52 4 

k 2 r 2 5 u 

„ _ ki3iea2j ZkIr1S34 _ rj\ 
1 k26325i4 Vk 3 Mi 4 n) ls 

and 

Here 
Ki = K1M 

y* _ kl5l3524 

k25326i4 

From equation 6 

Q = k2r28i4 / . 

M 1 2S 3 , 

S3W1: 

kin3 3 . 

ksr««i. / 3 

(25a) 

(25b) 

(25c) 

( 2 5 c - l ) 

(26) 

and/2 and/3 (where /2 + fi — 1) are the actual re
fractometric fractions of ionic species 2 and 3, 
equation 4. 

For the ascending boundaries equation 24 reduces 
to 

C - Q ( l L0 + Uy + Lrf + ...) (27) 
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w h e r e 

La = .—r- = ,STo (27a) 
k2r26u 

T _ ki513534 /kif-i524 r » \ , , „ „ , . 
Ll ~ tow; Vk2T 4̂ ~ VJ f} ( 2 7 b ) 

and 

L2 = L1A/ (27c) 
Here M and Q are denned by equations 25c-1 and 
26, respectively. 

For the usual electrophoresis experiment, the 
numerical values of J2, /3 and Q are the same for the 
ascending as for the descending boundary systems. 
Therefore equations 25 and 27 show directly an im
por tant result which was also emphasized above for 
the general case: in the limit as y -*• 0 the same ap
parent refractometric fraction, F2{y = n, is ob
tained from both boundary systems. 

I t is of help in understanding electrophoretic 
analysis to consider the factors which cause F2 to dif
fer from /2, both for the limiting case of y = 0 and 
for non-zero values of y. These factors are readily 
analyzed by inspection of the equations for 4-ion 
systems. 

(a) Limiting Case.—By setting y equal to zero 
in either equation 25 or 27 and recalling tha t / 2 + 
/ 3 = 1 , one obtains 

p = , ) 1 ~ VWLk 2 T j ( 

(l- UJLkIrJj1 + L t ^ - 1J f3\) 
(28) 

Here terms which are properties of the "buffer" are 
enclosed in parentheses and those which are prop
erties of the "proteins" are enclosed in brackets. 
Except for the trivial case of /3 = 0, it is seen t ha t 
F2(J, = o) e q u a l s / 2 only if the two "proteins" have 
physical properties such tha t 

For this case the denominator within the large 
braces of equation 28 equals the numerator. Un
less equation 29 is satisfied, the difference between 
F2ly = 0) a n d / 2 for a given "protein" system can
not be made zero by some advantageous choice of 
"buffer." The difference between these two values 
may be minimized, however, by selecting a "buffer" 
for which the ratio k^i /Sn is as small as possible. 

(b) Non-zero Values of y.—The dependence of 
F2 on y may be considered by examining the 
coefficients of y and of >>2. I t is seen tha t the co
efficient of y2 in either equation 25 or 27 is zero if 
the corresponding coefficient of y is zero; this fol
lows because K2 is proportional to K\ and L2 is pro
portional to L1. Even if neither Ki nor Lx is zero, 
however, both coefficients of y2 will be zero for tha t 
value of/2 which makes M equal to zero; then both 
^2Caso and Fjfdesc) depend linearly on y. The con
dition for M to be zero 

is readily derived by setting M = 0 in equation 
25c-1 and bearing in mind the definition of fj 
(equation 4). I t will be noted tha t equivalent re

fractions, k,-, are absent from equation 30; the 
ratio of "protein" equivalent concentrations for 
which the dependence of F2 on y becomes linear is 
determined only by the relative mobilities. 

The limiting slope a t y = 0 of F2 versus y is gen
erally different for the ascending and descending 
boundaries (Ki and Li are in general unequal). 
Both slopes increase as r% -*• n, i.e., as 532 -*• 0; this 
is in agreement with the findings of Svensson, Ben-
jaminsson and Brattsten1 2 who have stated tha t 
the deviations from the state of "ideal" electro
phoresis are greater the smaller the difference in 
mobility between the components. For descend
ing boundaries it is seen from equation 25b tha t A'i 
= 0 only if 5i2 = 0 or if the term in parentheses is 
zero. Similarly for ascending boundaries, Li = 0 
only if (Si3 = 0 or if the term in parentheses is zero. 

The variation in apparent analysis with the buffer 
anion used has been discussed b y Longsworth8 for 
a hypothetical two-protein case, wherein the pro
teins are negatively charged ions in 0.1 TV solutions 
of sodium buffer salts. All components were 
considered to be strong electrolytes. His calcula
tions (made using Dole's theory5) for a series of 
common buffer anions show tha t as the buffer 
anion mobility increases the apparent fraction of 
the faster protein becomes greater, this effect being 
more pronounced for the ascending than for the 
descending side. I t is of interest to examine the 
contributions made to this increase by specific 
terms in the above series expressions for F2 (for 
brevity only the descending boundary systems are 
considered here). This has been done for the same 
hypothetical systems considered by Longsworth 
and the results are summarized in Table I. In 
terms of the notation used in this article com
ponent 1 is the buffer anion, components 2 and 3 are 
the fast and slow protein ions and component 4 is 
sodium ion. Column 1 lists the buffer anions con
sidered, and the corresponding values8 of r± and 
k: are shown in columns 2 and 3. Numbers in the 
subsequent columns were computed by substi tuting 
into equations 12, 25 and 26 the assumed data,8 

viz., r2 = - 0 . 3 , ;-3 = - 0 . 1 5 , n = 1, C2 = - 0 . 0 0 3 6 
equiv./l . and C3 = —0.0018 equiv./ l . (for a con
centration of 1 g. per 100 ml. for each protein). 
Finally, taking the refractive index increment for 
each protein to be 0.00186 (g./lOO ml . ) - 1 , we have 
k2 = 0.51667 (equiv . / l . ) - 1 andk 3 = 1.03333 (equiv./ 
l . ) ~ \ whence/2 = /3 = 0.5. 

Because the values of (1 — KQ)/Q in column 4 
are nearly constant, it is evident from equation 25 
tha t F2ly = o) is almost independent of the buffer 
anions. For 0.1 TV buffer solutions, however, the 
term Kiy/Q (column 5 times column 7) has a 
pronounced effect on i^cdeso). with the magnitude 
of this term being markedly dependent on the an
ion. This term is counteracted to a slight extent 
by the much smaller negative term, K2y

2/Q. I t 
should be observed tha t the equivalent refraction, 
ki, of the buffer plays an important role in deter
mining the magnitude of Kiy/Q. For the Ki/Q 
par t of the term, no regular change is observed as 
the buffer anion mobility, r\, increases and ki (with 

(12) H. Svensson, A. Benjatninsson and I, Brattsten, Acta Chetn. 
Scand., 3, 307 (1949). 
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TABLE I 

T H E DEPENDENCE ON BUFFER ANION OF THE APPARENT REFRACTOMETRIC FRACTIONS, ^(deso), FOR MIXTURES OF T W O 

HYPOTHETICAL PROTEINS" 

1 
Buffer anion 

(ionic species 1) 

Diethylbarbiturate 

Lactate 

Glycinate 

Acetate 

Phosphate (dibasic) 

Chloride 

2 

— r, 

0.4640 

.5795 

.7098 

.7825 

1.1008 

1.6810 

3 

ki 

0.04055 

.01914 

.01746 

.01235 

.01484 

.01120 

4 
1 - Kt 

Q 

0.9931 

.9964 

.9963 

.9973 

.9980 

.9964 

5 
Ki 
Q 

0.01918 

.01425 

.01761 

.01406 

.02382 

.02428 

6 
K, 
Q 

-0 .001076 

- .000443 

- .000571 

- .000342 

- .000842 

- .000783 

7 8 
For 0.1 N buffers 

0.9174 

1.9436 

2.1306 

3.0121 

2.5067 

3.3214 

0.5049 
( .5028)6 

.5112 
( .5093) 

.5156 
( .5150) 

.5182 
( .5181) 

.5252 
( .5259) 

.5342 

9 
For y = 
- C i 

0.1000 

.2118 

.2323 

.3284 

. 2732 

.3621 

10 
0.9174 

ft(d«c) 
0.5049 

.5046 

.5060 

.5049 

.5086 

.5090 
( .5344) 

" To facilitate comparisons, the systems considered here are identical with those discussed by Longsworth (Table IV of 
ref. 8). Here the buffer anions are denoted by 1, the faster and slower protein ions by 2 and 3 and sodium ion by 4. b The 
values in parentheses were calculated by Longsworth (ref. 8) using Dole's theory (ref. 5). 

aqueous solution of KCl (the "buffer") should yield 
an apparent refractometric fraction of chlorate, F2, 
which differs greatly from its true refractometric 
fraction, /2. Therefore this system was chosen for 
some experiments to test and illustrate the theory; 
for the case C2 = C3 these results are presented in 
Fig. 3. Theoretical curves for F2 versus y are 
shown which were computed13 for both the ascend
ing and descending boundary systems using (1) the 
linear forms of equations 25 and 27 with the y2 

terms omitted, (2) equations 25 and 27 through 
terms of order y2 and (3) the complete Dole equa
tions.14 As y decreases, the two sets of curves for 
the ascending and descending boundary systems 
arc seen to converge and approach a limiting value 
of F2(y = o) = -0.0719. This intercept differs 
not only in magnitude but also in sign from the true 
refractometric fraction for this case,/2 = +0.2916. 
For values of y up to about 0.5 (corresponding to a 
typical experiment with proteins) the deviations of 
equations 25 and 27 from the complete Dole theory 
calculations are seen to be negligible. 

The values of F2 in Fig. 3 are negative because 
the refractive index gradient curve of the leading 
boundary is small and negative, while that of the 
following boundary is larger and positive. This in
verted gradient is barely visible in the schlieren 
photograph, Fig. 4a, which was taken at an early 
stage of the experiment, but it is seen distinctly in 
the Rayleigh fringe photograph of that figure which 
was taken at the same time. To conform with es
tablished notation16'16 for experimental work, the 
phases and boundaries of Fig. 4 are identified using 
symbols a, /3, 7 and 5 instead of 4, 3, 2 and 1 for the 

(13) Data obtained by Longsworth (ref. 15) for 0.2 N solutions at 0° 
were used for these calculations. His values for the relative mobilities 
are n = -1 .0231, r« = -0.8308, r» = -0.4691 and r, = 1.0000; for 
the refractive increments of the potassium salts (in liters per equivalent 
for mercury yellow light) he obtained ki = 0.01088, ki - 0.01142 and 
kt •• 0.02774. Although these values will differ somewhat from the 
correct ones for the present experiments (total salt concentrations of 
0.10-0.16 N, and mercury green light), they were the best estimates 
available. 

(14) Dole's equation 33 (ref. 5) was solved numerically, and the 
roots were substituted into his equation 31 to obtain the required con
centrations in the various phases. 

(15) L. G. Longsworth, T H I S JOURNAL, 67, 1109 (1945). 
(16) R. A. Alberty, ibid., 78, 2361 (1950). 

the exception of phosphate) decreases. However, 
the value of y, column 7, is inversely proportional 
to ki for a given protein mixture; hence the term 
Kiy/Q causes a steady progression of values of 
2̂<desc) as the buffer mobility increases. These 

values (column 8) of F2(deso) which were computed 
using series expansions of the Dole theory, equa
tions 25, are seen to be in close agreement with the 
values which Longsworth computed using the com
plete Dole theory. If the buffer concentrations 
are chosen to give identical values of y (which 
amounts to choosing the buffer concentrations in
versely proportional to their equivalent refractions), 
then K(deso shows a much smaller variation with 
change in buffer anion. This is illustrated in 
columns 9 and 10 of Table I in which are listed 
buffer anion concentrations, Cu and the corre
sponding values of F2(de8c)> for y = 0.9174 (the value 
for diethylbarbiturate at 0.1 N concentration). 

Similar but more pronounced effects can be 
shown to exist for the ascending system. 

It should be emphasized that in general the de
pendence of F2 on y is not linear except near y = 0. 
An attempt to draw a straight line through ex
perimental values of F2 obtained at fairly large 
values of y may therefore fail to give F2 (y = o>. 
Consequently, even for systems satisfying equation 
29 so that F2(y - o) = /2, the correct analysis is not 
obtained unless measurements are made at suffi
ciently small values of y. 

Application to Experimental Systems 
The above theory will now be applied to some 

recent data for two systems containing four ionic 
species in water. The first system demonstrates 
how the conventional procedures for analyzing 
electrophoresis experiments may result in large 
errors; for both systems the rapidity of conver
gence of the series expressions to the complete 
Dole theory is indicated. 

K C I - K C I O 3 - K I O S . - F o r this system we designate 
chloride, chlorate, iodate and potassium as ionic 
species 1, 2, 3 and 4, respectively. Preliminary 
calculations showed that a moving boundary 
analysis of a solution containing small amounts of 
KClO3 and KIO3 ("protein" components) in an 
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Fig. 3.—Apparent refractometric fraction, .F2, of chlorate 
for both ascending and descending boundaries of the system 
KCl-KClO3-KIOa as a function of the quantity y (equation 
12). The equivalent concentrations of chlorate and iodate 
are equal (/2 = +0.2916): • • • •, linear forms of equations 
25 and 27 with y2 terms omitted; , equations 25 and 
27 including y2 terms; •—, Dole's theory (ref. 5); O, 
experimental values for the ascending boundaries. 

ascending phases and 1, 2, 3 and 4 for the descend
ing phases (see Figs. 1 and 2). Measurements7 of 
Rayleigh fringe displacements for the different 
phases after complete boundary separation had oc
curred were used to obtain the three values of F2 
represented by circles in Fig. 3. The radius of each 
circle corresponds to an uncertainty of ±0.05 
fringe in these Rayleigh measurements. The small 
discrepancy between the experimental and theo
retical values of F2 for the ascending boundary sys
tems is believed to arise from using values for the 
Ti and k; which are not strictly applicable to this 
system.13 No experimental data are shown for the 
descending boundary systems because the leading 
boundary was so diffuse that quantitative meas
urements were not possible. 

Because a stable inverted boundary is present, 
this system is useful for illustrating the unusual 
values of Fi which sometimes occur. Therefore 
F2(y = o) was computed for values of /2 ranging 
from zero to unity, using in equation 25 (or 27) 
Longsworth's data13 for the r,- and k,. The results 
are shown in Fig. 5, where it is observed that there 
is a discontinuity at /2 = 0.860 (C2 = 14.9C3). 
This occurs because the refractive index changes 
across the negative leading boundary and the posi
tive following boundary are of equal magnitude 
at this composition, so that the denominator in the 
equation F2{y = 0) = A«2/(Aw2 + AM3) becomes zero. 
In the region/2 < 0.860 the negative values of F2{y = 0> 
occur because Aw2 is negative but of smaller magni
tude than Aw3, which is positive. For f2 > 0.860, 
F2(y = 0) is positive because AK2, though still negative, 
is of larger magnitude than Aw3, so that Aw2 + Aw3 is 

(a) 

<*-£ /S 8 SS 

-»• Asc. 

°C/9 /9Jf 5 8 

Desc. •* 1 

(b) 
Fig. 4.—Moving boundary patterns for KCl-KClO3-

KIO3 in water at 2°. (a) Schlieren and Rayleigh patterns 
after 2430 sec. at 16 ma. for an experiment wi th/ j = 0.2916. 
In the notation of ref. 16 these ascending boundaries are de
scribed by: KCl(Cl)(S) * - KCl, KC103(7) * - KCl, KClO3, 
KIO3(/3)::KCl(0.1), KClO3(C03), KIO„(0.03)(a). (b) As
cending and descending Rayleigh patterns after 5922 and 
6012 sec, respectively, at 16 ma. for an experiment with/2 = 
0.877. The ascending boundary system of this experiment 
is described by: KCl(Cl)(S) — KCl, K C 1 0 3 ( Y ) — KCl, 
KClO3, KIO3(/3)::KCl(0.1), KClO3(0.03), KIO3(0.00173)(a). 

negative. When / 2 = 1 then F2{y _ 0) - 1, and 
the only moving boundary should be an inverted 
one in which chlorate disappears; the existence of 
an inverted boundary for this case was confirmed 
experimentally with y = 0.210. An experiment 
also was performed with/2 = 0.877 and y = 0.359. 
The ascending and descending Rayleigh fringe pat
terns are shown in Fig. 4b. The two moving bound
aries, across which the refractive index changes 
are opposite in sign, are clearly visible. Admeasure
ments of the fringe displacements gave values of 
1.1 and 0.9 for -Aw2/Aw3 for the descending and 
ascending boundary systems, respectively. These 
results are in fair agreement with the corresponding 
values 1.17 and 1.16 predicted by inserting Longs-
worth's data13 for the r,- and k; into equations 25 
and 27. 

Sodium Acetate-Aspartate-Glutamate.—The 
above theory for strong electrolytes also can be 
applied to certain of the data which are reported 
in the companion paper7 for this system. It is 
applicable to those experiments performed in the 
pH range 7.6-8.0 because in this range only sodium 
ions and the univalent anion subspecies of the ace
tate, aspartate and glutamate constituents are pres
ent in significant concentration. We will desig
nate acetate, aspartate, glutamate and sodium as 
ionic species 1, 2, 3 and 4, respectively. Their rela-
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0 0 .5 0.860 1.0 

h. 
Fig. 5.—Variation of the limiting apparent refractometric 

fraction of chlorate, Fi(y = o), with/2 , the true refractometric 
fraction for the system KCl-KClO3-KIOa. 

tive mobilities are taken to be7 r\ — —16.7, r2 = 
- 1 1 . 1 , r3 = - 9 . 8 and rt = 22.2, while the refrac
tive increments (in liters per equivalent) for the 
sodium salts are taken as17 ki = 0.01232, k2 = 
0.02960 and k3 = 0.03239. In Fig. 6 is plotted the 
apparent refractometric fraction of aspartate, Fz, as 
a function of y for both the ascending boundaries 
(upper three curves) and descending boundaries 
(lower three curves) when C2 = C3. The several 
curves for F2 were computed in the same manner as 
those of Fig. 3. Included for comparison are the 
three experimental values reported in the compan
ion paper7 for the ascending boundaries of experi
ments 11, 12 and 13. For values of y up to about 
0.5 (corresponding to a typical protein experiment) 
the maximum deviation of equations 25 and 27 
from the complete Dole theory6 is of the order of one 
per cent, for this case. It should be noted that as y 
decreases the curves in Fig. 6 converge and ap
proach the limiting value of 0.4760 at y = 0. This 
value is very near the true refractometric fraction, 
f2 = 0.4775.18 I t must not be inferred that such 
close agreement of the limiting values will be ob
served for all amino acid systems. For this partic
ular system it happens that equation 29 is very 
nearly satisfied. However, if glycinate is sub-

(17) E. B. Dismukes and R. A. Alberty, T H I S JOURNAL, 75, 809 
(1953). 

(18) Four significant figures are retained to illustrate how Fi(y _ o) 
would compare with /2 if the values used for the ri and ki were exact. 

0.6 

0.5 
0 .4760* 

0 I 2 
y-

Fig. 6.—-Apparent refractometric fraction, .F2, of aspartate 
for the ascending and descending boundaries as a function of 
y, the ratio of total aspartate plus glutamate concentration 
to acetate concentration on the basis of refractive index. 
The equivalent concentrations of aspartate and glutamate 
are equal: • • • •, "limiting law" form of equations 25 and 
27 with y2 terms excluded; , equations 25 and 27 in
cluding y2 terms; , Dole's theory (ref. 5); O, experi
mental values from ref. 7 for the ascending boundaries. 

stituted for aspartate as component 2, then for /2 
= 0.350 (C2 = C3) one obtains19 F2(y = 0) = 0.238. 
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(19) Using Longsworth's mobility and refractive index data (ref. 8) 
for glycinate and the above values for sodium, acetate and glutamate 
ions. 
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